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Abstract—The thriving of the Internet of Things (IoT) has
become the enabler of smart eHealthcare, which greatly benefits
patients by providing various data-driven healthcare monitoring
services. Among those promising services, the time-series activi-
ties based healthcare monitoring service is highly regarded due
to its popularity. Meanwhile, with the rapidly growing volume
of healthcare data, an emerging trend is to outsource the time-
series activities based healthcare monitoring models and the cor-
responding services to a cloud, which however inevitably entails
privacy concerns. Although many existing works have put forth
some solutions for privacy-preserving time-series activities based
healthcare monitoring, they are not applicable to the outsourced
scenario with a single-server setting. To address the challenge,
in this paper, we propose an efficient and privacy-preserving
forward algorithm (PPFA) and further apply PPFA to construct
a remote healthcare monitoring scheme over the cloud. To the
best of our knowledge, our PPFA is the first privacy-preserving
forward algorithm over cloud while without any accuracy loss.
In addition, our remote healthcare monitoring scheme is also
the first privacy-preserving HMM-based healthcare monitoring
scheme in the single-server setting. Detailed security analysis
shows that our PPFA and healthcare monitoring scheme are
indeed privacy-preserving. In addition, extensive simulations are
conducted, and the results also demonstrate their efficiencies.

Index Terms—Privacy, time-series activities, eHealthcare,
healthcare monitoring, hidden Markov model.

I. INTRODUCTION

DRIVEN by the recent technological advances in the
Internet of Things (IoT) [1], [2] and wireless communi-

cations, the wireless body area network (WBAN) has become
increasingly flourishing and received considerable attention
from both industry and academia [3]. In eHealthcare, each
patient that is equipped with medical devices can be regarded
as a WBAN, and the data collected by the WBAN can assist
doctors located at healthcare centers to remotely monitor the
patient’s healthcare state [4]. With the dramatic increase of
healthcare data, an emerging trend among healthcare centers
is to outsource the healthcare monitoring models to a powerful
cloud and employ the cloud server to offer the healthcare
monitoring service to patients [5], [6]. Due to the privacy issue
of models, healthcare centers usually demand to encrypt the
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models before outsourcing them to the cloud server. However,
a consensus has emerged that encrypted models will inevitably
affect the query functionalities [7], [8]. In the eHealthcare
scenario, it will hinder the cloud server from efficiently
offering the healthcare monitoring service to patients.

To achieve healthcare monitoring over encrypted models,
many schemes have been proposed, and most of them target
different topics, e.g., human activities recognition [9], [10] and
disease predication [11]. In this work, we monitor patients’
healthcare states through time-series activities based classifi-
cation, i.e., classify patients to be normal or abnormal based on
the sequences of their daily living activities. Specifically, when
a patient has collected a time-series activities sequence y (e.g.,
y = {Waking up-Toileting-Breakfast-Resting}), the patient
will send the encrypted sequence E(y) to the cloud server.
Then, the cloud server uses an encrypted classification model
(that is outsourced by the healthcare center) to do classification
and returns the encrypted classification result (i.e., normal or
abnormal) to the patient.

In the design of the healthcare monitoring scheme, the
classification model is one of the most critical factors. The
work in [12], [13] has demonstrated that long short-term
memory (LSTM) neural network and hidden Markov model
(HMM) based classification models perform quite well in
time-series activities based healthcare monitoring. At the same
time, due to the simplicity and effectiveness, HMM becomes
more popular than the LSTM neural network in eHealthcare.
Naturally, privacy-preserving LSTM network and HMM based
classification models can be used for the construction of a
privacy-preserving healthcare monitoring scheme. However,
existing such models are not applicable to our outsourced
scenario with a single-server setting. On the one hand, some
privacy-preserving LSTM neural network based classifica-
tion models [14], [15] were constructed under the setting
of two non-collusive servers. These schemes are impractical
because the non-collusive assumption between two servers
seems strong, and the economic costs of two servers are
relatively high. On the other hand, too little work has been
devoted to designing privacy-preserving HMM based classi-
fication models in the outsourced scenario. Although some
existing privacy-preserving forward algorithms [16]–[21] can
be used to construct HMM-based classification models, they
only consider the scenario of two-party computation, (i.e., one
party holds the model, and the other one holds the time-series
activities sequence) and are not applicable to our outsourced
scenario.

In this paper, we aim at designing a healthcare monitoring
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scheme under a single-server setting. Due to its popularity, we
employ HMM as our classification model. The key idea of our
scheme is to train a normal HMM Λ1 and an abnormal HMM
Λ2 by respectively using normal and abnormal time-series
activities data. Then, given a time-series activities sequence
y = {y1, y2, · · · , yT }, we can classify for it by comparing
which model it matches better. Specifically, we can use the
forward algorithm of HMM to compute the probabilities of y
under the models Λ1 and Λ2, i.e., Pr(y|Λ1) and Pr(y|Λ2).
If Pr(y|Λ1) > Pr(y|Λ2), y is classified to be normal.
Otherwise, y is classified to be abnormal. We can observe
that the forward algorithm is the core of the HMM based
classification model, and the security of the whole healthcare
monitoring scheme depends on the security of the forward
algorithm. However, it is challenging to design a privacy-
preserving forward algorithm under a single-server setting.
This is the reason why the existing works [16]–[21] only
focus on designing privacy-preserving forward algorithms in
the scenario of two party computation.

Before introducing the challenges of designing privacy-
preserving forward algorithm, we first briefly describe the
forward algorithm. Suppose that the healthcare center has an
HMM Λ = (Π,A, {Bj}lj=1) (see details in Subsection III-B),
and a patient has a time-series sequence y = {y1, y2, · · · , yT }
with the length of T . The forward algorithm computes
Pr(y|Λ) as follows.
• Step 1: Compute Ψ = ΠBy1

∏T
i=2 AByi , where Byi is

a matrix related to yi among {Bj}lj=1.
• Step 2: Compute Pr(y|Λ) =

∑n
i=1

∑n
j=1 Ψi,j .

When designing the privacy-preserving forward algorithm,
we will face two challenges.

(1) How to compute {Byi}Ti=1 in Step 1? Since {Bj}lj=1

and y = {y1, y2, · · · , yT } are respectively held by the
healthcare center and the patient, a straightforward method
to privately compute {Byi}Ti=1 is to use a fully homomorphic
encryption to encrypt {Bj}lj=1 into {E(Bj)}lj=1 and encrypt
yi into an l-dimensional vector c = (c1, c2, · · · , cl) =
(E(0), · · · ,E(1), · · · ,E(0)), where the yi-th element of c is
E(1), and other elements are E(0). Then, one can compute
E(Byi) =

∑l
j=1(E(Bj) ∗ cj) with the homomorphic proper-

ties. Although the straightforward method is workable, it needs
to employ a fully homomorphic encryption technique. How-
ever, existing fully homomorphic encryption schemes [22],
[23] are based on computationally expensive cryptographic
primitives and have performance issues.

(2) How to guarantee the accuracy of Pr(y|Λ)? Since
HMM is a probabilistic model, all involved numbers are small
real numbers. However, most of the existing cryptographic
primitives perform computations over integers and cannot
provide a reasonable accuracy for the forward algorithm.
Thus, it is also challenging to guarantee the accuracy of the
computation result Pr(y|Λ).

To address the above challenges, in this paper, we propose
an efficient and privacy-preserving forward algorithm (PPFA)
and further use it as a building block to construct a privacy-
preserving healthcare monitoring scheme under a single-server
setting. To the best of our knowledge, our PPFA is the first
privacy-preserving forward algorithm in the cloud while with-

out any accuracy loss. Meanwhile, our healthcare monitoring
scheme is also the first one to achieve privacy-preserving
HMM-based healthcare monitoring in the cloud with a single-
server setting. Specifically, our contributions are three folds as
follows.
• First, to privately compute Byi in the single-server setting,

we propose the concept of mutually orthogonal matrices and
introduce an approach to construct a set of mutually orthogonal
matrices. In our definition, a set of mutually orthogonal
matrices {Di}li=1 satisfy

DT
i Dj =

{
I i = j

O i 6= j

for 1 ≤ i, j ≤ l, where I and O respectively denote an identity
matrix and a zero matrix. In this case, Byi can be computed
as Byi = DT

yi

∑l
j=1(DjBj).

• Second, we propose an efficient and privacy-preserving
forward algorithm, i.e., PPFA, by using a set of mutually
orthogonal matrices and a lightweight matrix encryption tech-
nique. In the PPFA, we use a set of mutually orthogonal
matrices to compute {Byi}Ti=1 and further use the matrix
encryption to preserve the privacy of the computation Ψ =
ΠBy1

∏T
i=2 AByi and Pr(y|Λ) =

∑n
i=1

∑n
j=1 Ψi,j . We

have three considerations when we choose the matrix encryp-
tion as our encryption technique.
(1) The core operations in Ψ are matrix multiplications.

Since the matrix encryption can perform efficient matrix
multiplications, it exactly fits well with the computational
requirement of the forward algorithm.

(2) The matrix encryption is lightweight, which can greatly
optimize the efficiency of our scheme.

(3) Since the matrix encryption performs computations over
real domain, it can guarantee the accuracy of the forward
algorithm.

• Third, we propose an efficient and privacy-preserving
healthcare monitoring scheme based on PPFA. Moreover, we
formally prove the security of the PPFA and analyze the
security of our healthcare monitoring scheme. The results
show that both PPFA and our healthcare monitoring scheme
are privacy-preserving. In addition, we conduct experiments
to validate their efficiencies, and the results indicate that they
are indeed efficient.

The remainder of this paper is organized as follows. In
Section II, we introduce our system model, security model,
and design goals. Then, we describe some preliminaries in
Section III. In Section IV, we present our scheme, followed
by security analysis and performance evaluation in Section V
and Section VI, respectively. In Section VII, we present some
related work. Finally, we draw our conclusion in Section VIII.

II. MODELS AND DESIGN GOALS

In this section, we introduce our system model, security
model, and identify our design goals.

A. System Model

In the system model, we consider a time-series activities
based healthcare monitoring model in the cloud, which in-
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volves three kinds of entities, including a healthcare center, a
cloud server, and multiple patients, as shown in Fig. 1.
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Fig. 1. System model under consideration

• Healthcare Center: The healthcare center is responsible
for detecting patients’ physical states by classifying their time-
series activities data to be normal or abnormal. Specifically,
when each patient registers in the system, the healthcare center
will collect a time-series activities dataset from the patient and
identify the class label of each time-series sequence. Through
the collected dataset, the healthcare center trains a personalized
classification model, which can be used for the time-series
activities based healthcare monitoring for the patient. Since
the healthcare center needs to do healthcare monitoring for a
large number of patients, to ease the computing pressure, it
will outsource all patients’ classification models to a powerful
cloud and employ the cloud server to do classification for each
patient. To preserve the privacy of classification models, it
encrypts these models before outsourcing them. As shown in
Fig. 1, in this work, we focus on using the classification model
to do classification in the outsourced scenario and leave the
research on training a classification model for the patient in
our future work.

• Cloud Server: The cloud server has plenty of computing
resources and is willing to provide them to others. In particular,
it firstly stores the encrypted classification models received
from the healthcare center, and then offers the classification
service to patients according to the encrypted classification
models and encrypted time-series activities of patients.

• Patients: There exist many patients in our system. Each
of them has a personalized classification model trained by the
healthcare center, and the corresponding ciphertext is stored
in the cloud server. To monitor the physical state, each patient
is equipped with many medical IoT devices, which collect
his/her time-series activities data and send them to his/her
smart phones in real time. The smart phones periodically
encrypt the collected data and report them to the cloud server
for classification. Finally, the patients obtain the health states
from the cloud server.

B. Security Model

In our security model, the healthcare center is considered to
be trusted because it initializes the entire system. The patients
are assumed to be honest, namely, they will honestly follow
the scheme to launch classification requests to the cloud server.
While for the cloud server, it is considered to be honest-
but-curious. That is, it will honestly follow the protocol to
offer the classification service to patients but may be curious
about some private information, including the plaintexts of the
classification models, classification requests, and classification
results. In addition, we assume that there is no collusion
between the cloud server and patients. The non-collusive
assumption is reasonable because the penalty of collusion for
the involving cloud server and patients is high, including losing
the trust of the healthcare center and being prosecuted. Note
that there may be other active attacks in the system, such as
data pollution attack. Since this work focuses more on privacy
preservation, those attacks are beyond the scope of this paper
and will be discussed in our future work.

C. Design Goals

In this work, our goal is to design an efficient and privacy-
preserving time-series activities based healthcare monitoring
scheme over cloud, and the following objectives should be
achieved.
• Privacy preservation: The privacy of the classifica-

tion models, classification requests, and classification results
should be preserved.
• Efficiency: The computational cost of the classification

algorithm should be minimized as much as possible.

III. PRELIMINARIES

In this section, we review the concept of HMM and a variant
of forward algorithm of HMM, named VFA-HMM, which will
serve as the building blocks of our proposed scheme.

A. HMM

HMM is a statistical Markov model and contains two kinds
of states, i.e., (i) n hidden states S = {S1, S2, · · · , Sn};
and (ii) l observation states O = {O1, O2, · · · , Ol}. The
states in the observed time-series sequences are from the
set of observation states {O1, O2, · · · , Ol}. HMM assumes
that each observed time-series sequence corresponds to a
hidden time-series sequence, whose states are from the set
of hidden states {S1, S2, · · · , Sn}. Specifically, suppose that
y = {y1, y2, · · · , yT } is an observed time-series sequence, and
yi ∈ O for i = 1, 2, · · · , T . Then, y corresponds to a hidden
time-series sequence x = {x1, x2, · · · , xT }, where xi ∈ S.
Meanwhile, xi is called as the hidden state of yi, and yi is
called as the emission state of xi. {x,y} is an HMM if it
satisfies the following two conditions.
(1) x = {x1, x2, · · · , xT } is a Markov process. That is, the

hidden state xi only depends on xi−1 and is independent
of other previous hidden states.

(2) Pr(yi|x1, x2, · · · , xi) = Pr(yi|xi). That is, the observa-
tion state yi only depends on the hidden state xi and is
independent of other hidden states.
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Based on these conditions, HMM defines three kinds of
probabilities, i.e., initial hidden states probability, transition
probability matrix among hidden states, and emission probabil-
ity matrix from hidden states to observation states. Specifically,
an HMM model λ = (π,A,B) is defined as follows.
• Initial hidden state probability π = (π1, π2, · · · , πn).

Each πi denotes the probability of the initial hidden state at
Si, i.e., πi = Pr(x1 = Si).
• Transition probability matrix among hidden states A =

(ai,j). A is an n×n matrix, and each ai,j denotes the transition
probability from the hidden state Si to the hidden state Sj , i.e.,
ai,j = Pr(xk+1 = Sj |xk = Si).
• Emission probability matrix from hidden states to obser-

vation states B = (bi,j). B is an n × l matrix, and each bi,j
denotes the emission probability from the hidden state Si to
the observation state Oj , i.e., bi,j = Pr(yk = Oj |xk = Si).

B. A Variant of Forward Algorithm of HMM

Let y = {y1, y2, · · · , yT } denote a time-series sequence of
length T and λ = (π,A,B) denote an HMM. The forward
algorithm of HMM is used for evaluating the probability of y
under the model λ = (π,A,B), i.e., Pr(y|λ). Based on the
traditional HMM and forward algorithm, we have proposed a
variant of HMM and a variant of forward algorithm of HMM
(VFA-HMM) in [24], which can also be employed to compute
Pr(y|λ). The details are described as follows.

A variant of HMM. Given an HMM λ = (π,A,B),
we can construct a variant of HMM, denoted by Λ =
(Π,A, {Bj}lj=1), as the following steps.
• Step-1: According to π, construct an n× n matrix Π =

(πi,j). Each πi,j is a random real number and satisfies that the
sum of values in the j-th column is πj . That is,

∑n
i=1 πi,j =

πj for j = 1, 2, · · · , n.
• Step-2: According to B, construct l diagonal matrices
{Bj}lj=1. Each Bj is constructed based on the j-th column
of B, i.e., Bj = diag(b1,j , b2,j , · · · , bn,j).

Then, the variant of HMM is Λ = (Π,A, {Bj}lj=1).
VFA-HMM. Given a time-series sequence y = {y1, y2,
· · · , yT } and a variant of HMM Λ = (Π,A, {Bj}lj=1), VFA-
HMM computes Pr(y|Λ) as follows.
• Step-1: Compute Ψ = ΠBy1

∏T
i=2 AByi , where Byi is

the diagonal matrix corresponding to the observation state yi
for i = 1, 2, · · · , T .
• Step-2: Compute Pr(y|Λ) =

∑n
i=1

∑n
j=1 Ψi,j .

IV. OUR PROPOSED SCHEME

In this section, we introduce an efficient and privacy-
preserving time-series activities based healthcare monitoring
scheme. Before delving into the details, we first define the
concept of mutually orthogonal matrices and introduce an
approach to construct a set of mutually orthogonal matrices.
Then, we present a privacy-preserving forward algorithm,
i.e., PPFA. Both mutually orthogonal matrices and PPFA are
important building blocks of our privacy-preserving healthcare
monitoring scheme over cloud.

A. Mutually Orthogonal Matrices

In this subsection, we propose the concept of mutually
orthogonal matrices and introduce how to construct a set of
mutually orthogonal matrices.

Definition 1 (Mutually Orthogonal Matrices): Given a set
of matrices {Di}li=1, they are called mutually orthogonal
matrices iff they satisfy that

DT
i Dj =

{
I i = j

O i 6= j

for 1 ≤ i, j ≤ l, where I and O respectively denote an identity
matrix and a zero matrix.

In the PPFA (introduced in Subsection IV-B), we need to
generate l mutually orthogonal matrices {Di}li=1, and they
satisfy that each DT

i Dj is an n × n square matrix for any
1 ≤ i, j ≤ l. In the following, we introduce how to generate
such kinds of mutually orthogonal matrices.
• Step-1: Generate an (n∗l)×(n∗l) orthogonal matrix W =

[w1,w2, · · · ,wn∗l], where wj is the j-column of W. Since
W is an orthogonal matrix, the vectors {w1,w2, · · · ,wn∗l}
satisfy that

wT
i wj =

{
1 i = j

0 i 6= j,

for 1 ≤ i, j ≤ n ∗ l.
• Step-2: Split W into l matrices {Di}li=1, and each Di is

in the form of

Di = [w(i−1)∗n+1,w(i−1)∗n+2, · · · ,wi∗n],

for 1 ≤ i ≤ l. Then, {Di}li=1 is a set of mutually orthogonal
matrices, and each DT

i Dj is an n× n matrix.
Correctness. The above approach is correct iff {Di}li=1

are l mutually orthogonal matrices. According to Definition 1,
{Di}li=1 is a set of mutually orthogonal matrices iff each
DT
i Dj satisfies that

DT
i Dj =

{
In×n i = j

On×n i 6= j,
(1)

where In×n is an n × n identity matrix, and On×n is an
n×n zero matrix. In the following, we prove that each DT

i Dj

satisfies Eq. (1).
Proof. We prove in two cases, i.e., i = j, and i 6= j.
Case 1: When i = j, we have

DT
i Dj = DT

i Di

=


qT
(i−1)∗n+1

qT
(i−1)∗n+2

...
qTi∗n

 [q(i−1)∗n+1,q(i−1)∗n+2, · · · ,qi∗n]

=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 = In×n.
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Case 2: When i 6= j, we have

DT
i Dj =


qT
(i−1)∗n+1

qT
(i−1)∗n+2

...
qTi∗n

 [q(j−1)∗n+1,q(j−1)∗n+2, · · · ,qj∗n]

=


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 = On×n,

Thus, {Di}li=1 is a set of mutually orthogonal matrices. �
The mutually orthogonal matrices can be used to achieve

one matrix retrieval from a set of matrices. Let {Xi}li=1 be l
matrices with the size of n × n. Let {Di}li=1 be l mutually
orthogonal matrices with the size of (n∗l)×n, and they satisfy
Eq. (1). We can deduce that

DT
i

l∑
j=1

(DjXj) =

l∑
j=1

(DT
i DjXj) = DT

i DiXi = Xi.

That is, DT
i

∑l
j=1(DjXj) = Xi. We can observe that if

{Di}li=1 and
∑l
j=1(DjXj) are respectively distributed to a

patient and a server, the patient can use DT
i to retrieve the

matrix Xi from the server. Note that this idea will be used in
the design of our PPFA in Subsection IV-B.

B. The Details of PPFA

PPFA is a privacy-preserving forward algorithm that can
privately compute Pr(y|Λ) through the ciphertext of Λ and
the query token of y, where Λ = (Π,A, {Bj}lj=1) is a variant
of HMM, and y = {y1, y2, · · · , yT } is a time-series sequence.
In the following, we first introduce the key idea of the PPFA,
and then introduce its detailed construction.

Key idea of PPFA. In the PPFA, we use the VFA-HMM
to compute Pr(y|Λ). According to the VFA-HMM in Subsec-
tion III-B, computing Pr(y|Λ) has two steps, i.e., (i) compute
Ψ = ΠBy1

∏T
i=2 AByi , where Byi is the diagonal matrix

corresponding to the observation state yi for i = 1, 2, · · · , T ;
and (ii) compute Pr(y|Λ) =

∑n
i=1

∑n
j=1 Ψi,j . From the

VFA-HMM, we can observe that the design of PPFA involves
three challenges.

(1) How to retrieve {ΠBy1 , {AByi}Ti=2} from {ΠBi}li=1

and {ABi}li=1? Specifically, to compute Ψ, we need
to retrieve the matrices {ΠBy1 , {AByi}Ti=2} from all
matrices {ΠBi}li=1 and {ABi}li=1 based on y =
{y1, y2, · · · , yT }.

(2) How to preserve the privacy of all computations?
(3) How to guarantee the accuracy of the computation result

Pr(y|Λ)? Since all data in the VFA-HMM are small
probabilities, it is challenging to guarantee the accuracy
of Pr(y|Λ).

To address these challenges, we have two countermeasures
as follows.
• Countermeasure I. We adopt a set of mutually orthogonal

matrices to retrieve {ΠBy1 , {AByi}Ti=2} from {ΠBi}li=1 and

{ABi}li=1. Let {Di}li=1 be l mutually orthogonal matrices.
We have {

DT
yi

∑l
j=1(DjΠBj) = ΠByi

DT
yi

∑l
j=1(DjABj) = AByi .

Furthermore, we have

Ψ = ΠBy1

T∏
i=2

AByi

= (DT
y1

l∑
j=1

(DjΠBj)) ∗
l∏
i=2

(DT
yi

l∑
j=1

(DjABj)).

Without lose of generality, let Π̃ =
∑l
j=1(DjΠBj) and Ã =∑l

j=1(DjABj). Then, we have

Ψ = (DT
y1Π̃) ∗ (

l∏
i=2

(DT
yiÃ)).

Next, given two n-dimensional vectors α = β =
[1, 1, · · · , 1]T , and we can deduce that

Pr(y|Λ) =
n∑
i=1

n∑
j=1

Ψi,j = αTΨβ.

• Countermeasure II. Since all data in the VFA-HMM
are in the form of matrices, we consider applying the matrix
encryption technique to preserve the privacy of the PPFA.
Besides, we can gain two additional benefits from the matrix
encryption, i.e., (i) the matrix encryption is computationally
efficient; and (ii) the matrix encryption can guarantee the ac-
curacy of the computation result Pr(y|Λ) because it performs
computations over real domain.

Detailed PPFA. Based on the above idea, we introduce the
detailed PPFA that has five algorithms, i.e., key generation,
encryption, token generation, retrieval, and decryption as fol-
lows.
• VFA.KeyGen(n, l, w, Tmax) : The input of the key gener-

ation algorithm is n, l, w, and Tmax, where n is the number of
hidden states, l is the number of observations, w is a parameter
for the randomness of ciphertexts and tokens, and Tmax is
the maximal length of time-series activities sequences in the
system. Then, on input (n, l, w, Tmax), the key generation
algorithm generates the secret key as the following steps.

(1) Generate l mutually orthogonal matrices {Di}li=1,
where Di ∈ R(n∗l)×n for 1 ≤ i ≤ l, and R denotes the
real domain.

(2) Generate 2Tmax invertible matrices {M2i−1,
M2i}Tmaxi=1 , where M2i−1 ∈ R(n∗l+w)×(n∗l+w) and
M2i ∈ R(n+w)×(n+w). Meanwhile, generate Tmax w × w
matrices RΠ and {RA,i}Tmaxi=2 .

The key generation algorithm outputs the secret key sk =
{{Di}li=1, {M2i−1,M2i}Tmaxi=1 ,RΠ, {RA,i}Tmaxi=2 }.
• VFA.Enc(Λ = (Π,A, {Bj}lj=1), sk) : We use sk to

encrypt the model Λ = (Π,A, {Bj}lj=1) as follows.
(1) We compute

Π̃ =

l∑
j=1

(DjΠBj); Ã =

l∑
j=1

(DjABj).
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(2) We use the matrices RΠ and {RA,i}Tmaxi=2 to extend Π̃

and Ã as

Π̃′ =

[
Π̃ O
O RΠ

]
; Ã′i =

[
Ã O
O RA,i

]
for i = 2, 3, · · · , Tmax.

(3) We use the matrices {M2i−1,M2i}Tmaxi=1 to encrypt Π̃′

and {Ã′i}
Tmax
i=2 as{

C1 = M1Π̃
′M2

Ci = M2i−1Ã
′
iM2i for i = 2, 3, · · · , Tmax.

(2)

The algorithm outputs the ciphertexts {Ci}Tmaxi=1 .
Remark: In the encryption algorithm, we respectively add

Tmax w × w random matrices RΠ and {RA,i}Tmaxi=2 into
Π̃′ and {Ã′i}

Tmax
i=2 . These random matrices can make the

ciphertexts {Ci}Tmaxi=1 probabilistic rather than deterministic.
• VFA.TokenGen(y = {y1, y2, · · · , yT }, sk) : Let y =

{y1, y2, · · · , yT } be a time-series activities sequence, where
T ≤ Tmax. We generate a query token for it as follows.

(1) We choose T non-zero random numbers {ryi}Ti=1 and
T non-zero random matrices {RD,yi}Ti=1, where ryi ∈ R and
RD,yi ∈ Rw×w. Then, we use ryi and RD,yi to extend Dyi

to a new matrix D̃yi as

D̃yi =

[
ryi ∗Dyi O

O RD,yi

]
.

(2) We choose two n-dimensional vectors α = β =
[1, 1, · · · , 1]T . Then, we generate two w-dimensional vectors
rα, rβ ∈ Rw. Furthermore, we construct two (n + w)-
dimensional vectors α′ and β′ as{

α′ = r′α ∗ [αT , rTα ]T

β′ = r′β ∗ [β
T , rTβ ]

T ,

where r′α and r′β are two non-zero random numbers. Then, we
generate the following query token.

Q1 = α′T D̃T
y1M

−1
1

Qi = M−1
2i−2D̃

T
yiM

−1
2i−1 for i = 2, 3, · · · , T

V = M−1
2T ∗ β

′.

(3)

The algorithm outputs the query token {{Qi}Ti=1,V} and
chosen numbers R = {{ryi ,RD,yi}Ti=1, r

′
α, r
′
β , rα, rβ}.

Remark: In the token generation algorithm, we also add
some random numbers and matrices into the query token
{{Qi}Ti=1,V}, which makes them probabilistic rather than
deterministic.
• VFA.Retrieval({Ci}Tmaxi=1 , {Qi}Ti=1,V) : On input

{Ci}Tmaxi=1 , {Qi}Ti=1 and V, the retrieval algorithm outputs
the value of z = (

∏T
i=1(QiCi)) ∗V.

• VFA.Dec(z, sk,R) : On input {z, sk} and R =
{{ryi ,RD,yi}Ti=1, r

′
α, r
′
β , rα, rβ}, the algorithm computes

Pr(y|Λ) as

Pr(y|Λ)

=
1∏T

i=1 ryi
(

z

r′α ∗ r′β
− rTα ∗ (RD,y1RΠ

T∏
i=2

(RD,yiRA,yi )) ∗ rβ).

Correctness. The PPFA is correct iff VFA.Dec(·) is correct,
i.e.,

Pr(y|Λ)

=
1∏T

i=1 ryi
(

z

r′α ∗ r′β
− rTα ∗ (RD,y1RΠ

T∏
i=2

(RD,yiRA,yi)) ∗ rβ)

=

n∑
i=1

n∑
j=1

Ψi,j .

Proof. First, we have

z = (

T∏
i=1

(QiCi)) ∗V = (Q1C1

T∏
i=2

(QiCi)) ∗V

= (α′T D̃T
y1M−1

1 M1Π̃
′M2)

∗ (
T∏
i=2

(M−1
2i−2D̃

T
yiM

−1
2i−1M2i−1Ã

′
iM2i)) ∗ (M−1

2T ∗ β
′)

= α′T D̃T
y1Π̃′(

T∏
i=2

(D̃T
yiÃ

′
i))β

′.

Meanwhile, we have

D̃T
y1Π̃′ =

[
ry1 ∗Dy1 O

O RD,y1

] [
Π̃ O
O RΠ

]
=

[
ry1 ∗Dy1Π̃ O

O RD,y1RΠ

]
D̃T
yiÃ

′ =

[
ryi ∗Dyi O

O RD,yi

] [
Ã O
O RA,yi

]
=

[
ryi ∗DyiÃ O

O RD,yiRA,yi

]
for i = 2, 3, · · · , T.

Then, we can deduce that

D̃
T
y1

Π̃
′
(
T∏
i=2

(D̃
T
yi

Ã
′
))

=

[
(ry1DT

y1
Π̃)(

∏l
i=2(ryiD

T
yi

Ã)) O

O (RD,y1
RΠ)(

∏T
i=2(RD,yi

RA,yi
))

]

=

[
Ψ
∏T
i=1 ryi O

O (RD,y1
RΠ)(

∏T
i=2(RD,yi

RA,yi
))

]
.

Furthermore, we have

z = α′T D̃T
y1

Π̃′(
T∏
i=2

(D̃T
yi

Ã′))β′

= α′T
[
Ψ
∏T
i=1 ryi O

O (RD,y1RΠ)(
∏T
i=2(RD,yiRA,yi ))

]
β′

= r′α ∗ r′β((
T∏
i=1

ryi )α
TΨβ + rTα (RD,y1RΠ)(

T∏
i=2

(RD,yiRA,yi ))rβ).

In this case, we can deduce that

Pr(y|Λ)

=
1∏T

i=1 ryi
(

z

r′α ∗ r′β
− rTα (RD,y1RΠ

T∏
i=2

(RD,yiRA,yi ))rβ)

=
1∏T

i=1 ryi
(

T∏
i=1

ryi )α
TΨβ

= αTΨβ =

n∑
i=1

n∑
j=1

Ψi,j .

Thus, the correctness of PPFA follows. �
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C. Our Proposed Healthcare Monitoring Scheme

In this subsection, we propose an efficient and privacy-
preserving time-series activities based healthcare monitoring
scheme. In our scheme, we achieve the time-series activ-
ities based healthcare monitoring through two variant of
HMMs, i.e., Λ1 and Λ2. The models Λ1 and Λ2 are re-
spectively trained by normal time-series activities sequences
and abnormal time-series activities sequences. Given a time-
series activities sequence y = {y1, y2, · · · , yT } that needs
to be classified, we first compute Pr(y|Λ1) and Pr(y|Λ2).
If Pr(y|Λ1) > Pr(y|Λ2), y is classified to be normal.
Otherwise, y is classified to be abnormal. Specifically, our
scheme contains three phases, i.e., setup, classification model
outsourcing, and classification query.
• Setup: The healthcare center is responsible for setting up

the whole system. As described above, it has a classification
model with two variant of HMMs, i.e., Λ1 and Λ2. Suppose
that Λ1 and Λ2 have n hidden states and l observation
states, and Tmax is the maximal length of the patient’s time-
series activities sequences. Then, the healthcare center sets
the parameter w and calls the VFA.KeyGen(·) algorithm to
generate two secret keys as{

sk1 ← VFA.KeyGen(n, l, w, Tmax)

sk2 ← VFA.KeyGen(n, l, w, Tmax),

where sk1 and sk2 are respectively used for encrypting Λ1

and Λ2. Furthermore, when the patient registers in the system,
the healthcare center authorizes them with the secret keys
{sk1, sk2}.
• Classification model outsourcing: In this phase, the

healthcare center encrypts the classification model (Λ1,Λ2),
and outsources it to the cloud server. Specifically, it first calls
the VFA.Enc(·) algorithm to encrypt Λ1 and Λ2 as{

{CΛ1,i}
Tmax
i=1 ← VFA.Enc(Λ1, sk1)

{CΛ2,i}
Tmax
i=1 ← VFA.Enc(Λ2, sk2).

Then, it outsources the encrypted classification model
({CΛ1,i}

Tmax
i=1 , {CΛ2,i}

Tmax
i=1 ) to the cloud server.

• Classification query: In the classification query phase, a
patient can obtain the classification result with the help of the
cloud server as follows.

(1) Patient → Server: The patient calls the
VFA.TokenGen(·) algorithm to generate two tokes{
{{QΛ1,i}Ti=1,VΛ1

},RΛ1
← VFA.TokenGen(y, sk1)

{{QΛ2,i}Ti=1,VΛ2
},RΛ2

← VFA.TokenGen(y, sk2).

Then, the patient sends ({{QΛ1,i}Ti=1,VΛ1}, {{QΛ2,i}Ti=1,
VΛ2
}) to the cloud server via a secure channel and locally

keeps (RΛ1
,RΛ2

).
(2) Server → Patient: On receiving ({{QΛ1,i}Ti=1,VΛ1

},
{{QΛ2,i}Ti=1,VΛ2}), the cloud server calls the
VFA.Retrieval(·) algorithm to obtain{
z1 ← VFA.Retrieval({CΛ1,i}

Tmax
i=1 , {QΛ1,i}Ti=1,VΛ1

)

z2 ← VFA.Retrieval({CΛ2,i}
Tmax
i=1 , {QΛ2,i}Ti=1,VΛ2

).

Then, the cloud server returns (z1, z2) to the patient via a
secure channel.

(3) Patient: On receiving (z1, z2), the patient calls the
VFA.Dec(·) algorithm to obtain{

Pr(y|Λ1)← VFA.Dec(z1, sk1,RΛ1
)

Pr(y|Λ2)← VFA.Dec(z2, sk2,RΛ2
).

If Pr(y|Λ1) > Pr(y|Λ2), y is classified to be normal.
Otherwise, y is classified to be abnormal.

V. SECURITY ANALYSIS

In this section, we analyze the security of the proposed
healthcare monitoring scheme. Since the healthcare monitoring
scheme is constructed based on the PPFA, we first prove the
security of the PPFA, and then analyze the security of the
healthcare monitoring scheme.

A. Security of PPFA

PPFA is essentially a searchable encryption scheme. In
this scheme, a variant of HMM Λ is encrypted into ci-
phertexts {Ci}Tmaxi=1 . Given a time-series activities sequence
y = {y1, y2, · · · , yT }, we can generate a query token that
can be used to compute Pr(y|Λ). Same as the searchable
encryption scheme in [25], we prove the security of the PPFA
in the real and ideal experiments setting. The main idea of the
real and ideal experiments setting is to show that a simulator
in the ideal experiment and without any secret information can
simulate the ciphertexts and tokens in the real experiment such
that any probabilistic polynomial time (PPT) adversary cannot
distinguish the real and ideal experiments. Both real and ideal
experiments have four phases, including setup phase, token
generation phase 1, challenge phase, and token generation
phase 2, which respectively correspond to the VFA.KeyGen(·)
algorithm, the VFA.TokenGen(·) algorithm, the VFA.Enc(·)
algorithm, and the VFA.TokenGen(·) algorithm. It is worth
noting that the real and ideal experiments contain two token
generation phases, where the first one is before the challenge
phase and the second one is after the challenge phase. That
is, an adversary can adaptively obtain query tokens. The
reason why we allow the adversary to have such an attack
capability is that the patients in our healthcare monitoring
scheme are allowed to launch classification queries multiple
times, so the adversary (i.e., the cloud server) has a chance to
adaptively obtain query tokens. Specifically, the real and ideal
experiments can be defined as follows.

Real experiment. The real experiment has two participants,
i.e., a PPT adversary A and a challenger. They interact as the
following four phases.
• Setup: In the setup phase, the adversary A generates

a variant of HMM Λ = (Π,A, {Bj}lj=1). The model
Λ contains n hidden states and l observation states. The
maximal length of time-series activities sequences in the
system is Tmax. Meanwhile, A sets a parameter w. Then,
A sends Λ and (n, l, w, Tmax) to the challenger. On re-
ceiving them, the challenger generates a secret key sk ←
VFA.KeyGen(n, l, w, Tmax). Furthermore, it uses sk to en-
crypt Λ into ciphertexts as {CΛ,j}Tmaxj=1 ← VFA.Enc(Λ, sk).
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• Token generation phase 1: In the token generation
phase 1, the adversary A generates p1 time-series activities
sequences {yj}p1j=1, and the length of yj is Tj , where Tj ≤
Tmax. Then, A sends {yj}p1j=1 to the challenger. On receiving
{yj}p1j=1, the challenger generates query tokens for them.
Specifically, for each yj , the challenger generates a query
token as {{Qyj ,i}Ti=1,Vyj} ← VFA.TokenGen(yi, sk). Then,
the challenger returns these tokens {{Qyj ,i}Ti=1,Vyj}

p1
j=1 to

A.
• Challenge phase: The challenger returns the ciphertexts

{CΛ,j}Tmaxj=1 to A.
• Token generation phase 2: In the token generation phase

2, A generates (p2 − p1) time-series activities sequences
{yj}p2j=p1+1, and the length of yj is Tj , where Tj ≤ Tmax.
Then, same as Token generation phase 1, A gets the query
tokens of {yj}p2j=p1+1, i.e., {{Qyj ,i}Ti=1,Vyj}

p2
j=p1+1, from

the challenger.
Ideal experiment. The ideal experiment has two participants,

i.e., a PPT adversary A and a simulator, and they interact as
follows.
• Setup: In the setup phase, A sends a variant of HMM

Λ = (Π,A, {Bj}lj=1) and the corresponding parameters
(n, l, w, Tmax) to the simulator. On receiving them, the simu-
lator generates Tmax (n ∗ l+w)× (n+w) non-zeros random
matrices {C′Λ,j}

Tmax
j=1 as the ciphertexts.

• Token generation phase 1: In the token generation phase
1, A sends p1 time-series activities sequences {yj}p1j=1 to
the simulator. On receiving {yj}p1j=1, the simulator generates
p1 random query tokens. Specifically, for yj , the simulator
generates an (n ∗ l + w)-dimensional vector Q′yj ,1, (T − 1)

(n+ w)× (n ∗ l + w) matrices {Q′yj ,i}
T
i=2, and an (n+ w)-

dimensional vector V′yj as the query token of yj . Finally, the
simulator sends all query tokens {{Q′yj ,i}

T
i=1,V

′
yj}

p1
j=1 to A.

• Challenge phase: The simulator returns the ciphertexts
{C′Λ,j}

Tmax
j=1 to A.

• Token generation phase 2: In the token generation phase
2, A generates (p2 − p1) time-series activities sequences
{yj}p2j=p1+1, and the length of yj is Tj , where Tj ≤ Tmax.
Then, same as Token generation phase 1 of the ideal
experiment, A gets the query tokens of {yj}p2j=p1+1, i.e.,
{{Q′yj ,i}

T
i=1,V

′
yj}

p2
j=p1+1, from the simulator.

In the real experiment, the view of A is ViewA,Real =
{{CΛ,j}Tmaxj=1 , {{Qyj ,i}Ti=1,Vyj}

p2
j=1}. In the ideal exper-

iment, the view of A is ViewA,Ideal = {{C′Λ,j}
Tmax
j=1 ,

{{Q′yj ,i}
T
i=1,V

′
yj}

p2
j=1}. Based on A’s views in the real and

ideal experiments, we formally define the security of the
privacy-preserving VFA-HMM.

Definition 2 (Security of PPFA): PPFA is selectively secure
iff for any PPT adversary A issuing one time model encryption
and a polynomial number of query token generations, there ex-
ists a simulator such that the advantage that A can distinguish
the views of real and ideal experiments is negligible. That is,
|Pr[ViewA,Real = 1]− Pr[ViewA,Ideal = 1]| is negligible.

Theorem 1: PPFA is selectively secure.
Proof. According to Definition 2, PPFA is selectively se-

cure iff A cannot distinguish ViewA,Real and ViewA,Ideal.
Since all ciphertexts and tokens in the ideal exper-
iment are random generated, distinguishing ViewA,Real

from ViewA,Ideal is equivalent to distinguish ViewA,Real

from random ciphertexts and tokens. Since ViewA,Real =

{{CΛ,j}Tmaxj=1 , {{Qyj ,i}
Tj
i=1,Vyj}

p2
j=1}, we respectively show

that {CΛ,j}Tmaxj=1 , {{Qyj ,i}
Tj
i=1,Vyj}

p2
j=1, and the intermediate

results computed by them are indistinguishable from random
ciphertexts and tokens.
• {CΛ,j}Tmaxj=1 are indistinguishable from random cipher-

texts. According to Eq. (2), we have C1 = M1Π̃
′M2 and

Ci = M2i−1Ã
′
iM2i for i = 2, 3, · · · , Tmax, where

Π̃′ =

[
Π̃ O
O RΠ

]
; Ã′i =

[
Ã O
O RA,i

]
for i = 2, 3, · · · , Tmax.

Since RΠ, {RA,i}Tmaxi=2 are random matrices and
{M2i−1,M2i}Tmaxi=1 are unknown, C1 and {Ci}Tmaxi=2 are
indistinguishable from random matrices. That is, {Ci}Tmaxi=1

are indistinguishable from random matrices.
• {{Qyj ,i}

Tj
i=1,Vyj}

p2
j=1 are indistinguishable from ran-

dom tokens. For different yj’s, the token {{Qyj ,i}
Tj
i=1,

Vyj}
p2
j=1 are different. Without loss of generality, we use the

same symbol to denote each query token, i.e., {{Qi}Ti=1,V}.
According to Eq. (3), we have Q1 = α′T D̃T

y1M
−1
1 , Qi =

M−1
2i−2D̃

T
yiM

−1
2i−1 for i = 2, 3, · · · , T , and V = M−1

2T ∗ β
′,

where
α′ = r′α ∗ [αT , rTα ]T

β′ = r′β ∗ [β
T , rTβ ]

T

D̃yi =

[
ryi ∗Dyi O

O RD,yi

]
for i = 1, 3, · · · , T.

For the vector Q1, since r′α and ryi are two random num-
bers, RD,y1 is a random matrix, and Dy1 , M−1

1 are unknown,
we can deduce that Q1 is indistinguishable from a random
vector. For Qi, since {ryi ,RD,yi}Ti=1 are random chosen and
{M2i−1,M2i}Ti=1 are unknown, we can deduce that {Qi}Ti=2

are indistinguishable from random matrices. For the vector
V, since r′β is a random number, rβ is a random vector, and
M2T is unknown, we can deduce that V is indistinguishable
from a random vector. Therefore, {{Qyj ,i}

Tj
i=1,Vyj}

p2
j=1 are

indistinguishable from random tokens.
• The intermediate results computed from {CΛ,j}Tmaxj=1

and {{Qyj ,i}
Tj
i=1,Vyj}

p2
j=1 are indistinguishable from ran-

dom numbers. Since each ciphertext or token in {CΛ,j}Tmaxj=1

and {{Qyj ,i}
Tj
i=1,Vyj}

p2
j=1 contains random numbers, random

vector, random matrices, or unknown matrices. When the
adversary A uses them to generate some intermediate results,
these random numbers still exist in the intermediate results.
Thus, the intermediate results are also indistinguishable from
random numbers.

Therefore, A cannot distinguish ViewA,Real from ran-
dom ciphertexts and tokens. That is, A cannot distinguish
ViewA,Real from ViewA,Ideal. Hence, PPFA is selectively
secure. �

B. Security of Our Healthcare Monitoring Scheme

In this subsection, we analyze the security of our healthcare
monitoring scheme. We will show that the classification model,
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the classification query requests, and the classification results
are privacy-preserving.
• The classification model (Λ1,Λ2) is privacy-

preserving. Since the classification model is a private asset of
the healthcare center, it should be kept secret from the cloud
server and patients. In our classification scheme, the model
(Λ1,Λ2) are respectively encrypted by the PPFA. Then, the
security of the PPFA can guarantee that the cloud server has
no idea on the plaintext model. For the patients, when they
launch a classification request, they can receive two values
z1 and z2. Although they can use z1 and z2 to recover the
probabilities Pr(y|Λ1) and Pr(y|Λ2), it is hard for them to
obtain the classification model (Λ1,Λ2) from the probabilities
Pr(y|Λ1) and Pr(y|Λ2). Therefore, the classification model
(Λ1,Λ2) is privacy-preserving.
• The classification query requests are privacy-

preserving. The query requests contain patients’ private time-
series activities sequences, which should be kept secret from
the cloud server. In our classification scheme, patients use
PPFA to generate tokens for the queried time-series sequences.
Then, the security of the PPFA can guarantee that the cloud
server has no idea on the queried time-series activities se-
quences. Thus, the classification query requests are privacy-
preserving.
• The classification results are privacy-preserving. The

classification results are the private information of patients,
which should be kept secret from the cloud server. In our
scheme, the classification results are determined by Pr(y|Λ1)
and Pr(y|Λ2). For the cloud server, it can only obtain the
values z1 and z2 that are related to Pr(y|Λ1) and Pr(y|Λ2).
However, since z1 and z2 also contain other random numbers,
it is hard for the cloud server to recover Pr(y|Λ1) and
Pr(y|Λ2) from z1 and z2. Thus, the cloud server has no idea
on the classification results, so the classification results are
privacy-preserving.

VI. PERFORMANCE EVALUATION

In this section, we compare our proposed healthcare moni-
toring scheme with existing related schemes and evaluate the
computational cost of our healthcare monitoring scheme.

Comparison with existing schemes. Our healthcare mon-
itoring scheme is the first privacy-preserving healthcare mon-
itoring scheme in the single-serve setting. For other existing
schemes, they are constructed either in the scenario of two-
party computation [16]–[21] or in the two-server setting [12],
[13], which are not applicable to our scenario. Moreover, as
discussed in Section I, we can use a fully homomorphic en-
cryption scheme to construct a healthcare monitoring scheme
in the single-serve setting. However, existing fully homomor-
phic encryption schemes are computationally inefficient, so the
fully homomorphic encryption based healthcare monitoring
scheme will be theoretically much less efficient than our
healthcare monitoring scheme.

Next, we will evaluate the performance of our healthcare
monitoring scheme. Since our healthcare monitoring scheme
is constructed based on the PPFA, its computational cost
completely depends on that of PPFA. Thus, we focus on
evaluating the computational cost of PPFA.

Experimental setting. We implemented PPFA in Java and
run experiments on a machine with an Intel(R) Core(TM)
i7-3770 CPU @3.40GHz, 16GB RAM and Windows 10
operating system. Since the computational cost of the PPFA
is not affected by the distribution and skewness of the dataset,
we perform the evaluation on a synthetic dataset. That is, the
HMM model and time-series activities sequences are generated
randomly. In the HMM model, the number of hidden states
ranges from 10 to 40. The number of observations ranges
from 10 to 40. The maximal length of the time-series activities
sequences ranges from 10 to 80.

We evaluate the computational cost of the PPFA from
the aspects of encryption, token generation, retrieval, and
decryption algorithms. As described in Subsection IV-B, the
computational cost of the PPFA is affected by five parameters
including (i) n: the number of hidden states; (ii) l: the number
of observations; (iii) Tmax: the maximal length of the time-
series activities sequences; (iv) T : the length of a time-
series activities sequence; and (v) w: the number of artificial
dimensions. In our experiments, we set w = 2, which is
enough to provide the randomness of the ciphertexts and
tokens in the PPFA. Then, we mainly consider how n, l, T ,
and Tmax affect the computational cost of the PPFA. Each
experiment is conducted 100 times, and the average result is
reported. Detailed experimental results are described below.

A. Computational Cost of Encryption Algorithm

The encryption algorithm is used to encrypt an HMM model
Λ = (Π,A, {Bj}lj=1). The corresponding computational
cost mainly comes from two parts, i.e., (i) compute Π̃ =∑l
j=1(DjΠBj) and Ã =

∑l
j=1(DjABj); and (ii) compute

C1 = M1Π̃
′M2 and {Ci = M2i−1Ã

′
iM2i}Tmaxi=2 . For the

first part, the computational cost is O(2n3l2). For the second
part, the computational cost is O(Tmax(n

3l2+n3l)). Thus, the
total computational cost is about O(Tmax(n

3l2+n3l)+2n3l2),
which is closely related to the parameters {n, l, Tmax}. In the
following, we show how {n, l, Tmax} affect the computational
cost of the encryption algorithm.
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Fig. 2. Computational cost of model encryption algorithm

• n and Tmax: In Fig. 2(a), we plot the computational cost
of the model encryption algorithm varying with n and Tmax.
In this experiment, the parameters are set as l = 40, n is
in the range of {10, 20, 30, 40}, and Tmax ranges from 10 to
80. From Fig. 2(a), we can see that the computational cost of
the model encryption algorithm linearly increases with Tmax
and shows a cubic growth trend with n. Overall, the model
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encryption algorithm is efficient. For example, when n = 40,
l = 40, and Tmax = 80, encrypting an HMM model only
takes 8213.5 ms.
• l and Tmax: In Fig. 2(b), we plot the computational cost

of the model encryption algorithm varying with l and Tmax.
In this experiment, the parameters are set as n = 40, l is in
the range of {10, 20, 30, 40}, and Tmax ranges from 10 to 80.
From Fig. 2(b), we can see that the computational cost of the
model encryption algorithm linearly increases with Tmax and
quadratically increases with l.

B. Computational Cost of Token Generation Algorithm

The token generation algorithm is used to generate a token
for a time-series activities sequence y = {y1, y2, · · · , yT }.
The computational cost is mainly from computing Q1 =
α′T D̃T

y1M
−1
1 , {Qi = M−1

2i−2D̃
T
yiM

−1
2i−1}Ti=2, and V =

M−1
2T ∗β

′. Specifically, computing Q1 requires O(n2l+n2l2)

computational cost. Computing {Qi = M−1
2i−2D̃

T
yiM

−1
2i−1}Ti=2

requires O((T − 1)(n3l2 + n3l)) computational cost. Com-
puting V requires O(n2) computational cost. Thus, the total
computational cost is O((T−1)(n3l2+n3l)+n2l+n2l2+n2).
Thus, the computational cost of the token generation algorithm
is affected by the parameters {n, l, T}. Detailed experimental
results are shown as follows.
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Fig. 3. Computational cost of token generation algorithm

• n and T : In Fig. 3(a), we plot the computational cost
of the token generation algorithm varying with n and T .
In this experiment, the parameters are set as l = 40, n is
in the range of {10, 20, 30, 40}, and T ranges from 10 to
80. From Fig. 3(a), we can see that the computational cost
of the token generation algorithm linearly increases with T
and cubically increases with n. Overall, the token generation
algorithm is efficient. For example, when n = 40, and l = 40,
generating a query token for an 80-dimensional time-series
activities sequence takes 9830.5 ms.
• l and T : In Fig. 3(b), we plot the computational cost

of the token generation algorithm varying with l and T . In
this experiment, the parameters are set as n = 40, l is in
the range of {10, 20, 30, 40}, and T ranges from 10 to 80.
From Fig. 3(b), we can see that the computational cost of
the token generation algorithm linearly increases with T and
quadratically increases with l.

C. Computational Cost of Retrieval Algorithm

The retrieval algorithm is used to compute z =
(
∏T
i=1(QiCi)) ∗ V, and its computational cost is O((T −

1)n3l + n2l + n2). Thus, the computational cost is mainly
affected by the parameters {n, l, T}, and the detailed experi-
mental results are shown as follows.
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Fig. 4. Computational cost of retrieval algorithm

• n and T : In Fig. 4(a), we plot the computational cost
of the retrieval algorithm varying with n and T . In this
experiment, the parameters are set as l = 40, n is in the
range of {10, 20, 30, 40}, and T ranges from 10 to 80. From
Fig. 4(a), we can see that the computational cost of the
retrieval algorithm linearly increases with T and cubically
increases with n. Overall, the retrieval algorithm is efficient.
For example, when n = 40, l = 40, and T = 80, the retrieval
algorithm takes 196.5 ms.
• l and T : In Fig. 4(b), we plot the computational cost

of the retrieval algorithm varying with l and T . In this
experiment, the parameters are set as n = 40, l is in the
range of {10, 20, 30, 40}, and T ranges from 10 to 80. From
Fig. 4(b), we can see that the computational cost of the
retrieval algorithm linearly increases with T and l.

D. Computational Cost of Decryption Algorithm
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Fig. 5. Computational cost of decryption algorithm

The decryption algorithm is to compute Pr(y|Λ) =
1∏T

i=1 ryi
( z
r′α∗r′β

− rTα ∗ (RD,y1RΠ

∏T
i=2(RD,yiRA,yi)) ∗ rβ).

Since {rα, rβ} are w-dimensional and {RD,yi ,RΠ,RA,yi}
are w×w, the computational cost of the decryption algorithm
is about O(Tw3 + 2w2). Since w is fixed, the computational
cost is only affected by the parameter T . In Fig. 5, we plot the
computational cost of the decryption algorithm varying with T ,
where T ranges from 10 to 80. From this figure, we can see
that the experimental result validates that the computational
cost of the decryption algorithm linearly increases with T
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and also demonstrates that the decryption algorithm is indeed
efficient. For example, when T = 80, the decryption algorithm
only takes 0.05335 ms.

VII. RELATED WORK

Since HMM and LSTM neural network can perform well in
time-series activities based healthcare monitoring, we review
some existing works on privacy-preserving HMM and privacy-
preserving LSTM that are close to our work.

HMM is a good probability model for the discrete time-
series activities data [13], [26]–[28] and is an effective method
to realize time-series activities based healthcare monitoring
for patients. In the HMM-based healthcare monitoring model,
the efficiency and security completely depend on that of the
forward algorithm. To make the forward algorithm privacy-
preserving, many solutions were proposed in the literature.
However, they were designed in the scenario of two party
computation and are not applicable to the outsourced scenario.

Specifically, Smaragdis et al. [16] employed a public-key
homomorphic encryption scheme to design a client-server
based two party computation protocol. In this protocol, the
client and the server can privately compute the probability
of a time-series sequence under an HMM model through
multi-round intersections. Since many involved protocols in
this algorithm require plaintext information, this algorithm is
not applicable to the outsourced scenario. Meanwhile, this
algorithm has the issue of accuracy because the proposed al-
gorithm can only deal with integers. To improve the accuracy,
Pathak et al. [17], [18] proposed two forward algorithms by
using the homomorphic encryption technique and oblivious
transfer protocol. By representing small probability values into
fixed-point numbers, these algorithms can achieve a reasonable
accuracy when the HMM is small. However, same as the
scheme in [16], these algorithms are not applicable to the
outsourced scenario.

To obtain a reasonable accuracy, Franz et al. [20] proposed
a privacy-preserving forward algorithm based on a homomor-
phic encryption scheme in [29]. However, this scheme is also
a two-party computation protocol and is not applicable to
the outsourced scenario. To improve both the computational
efficiency and accuracy, Polat et al. [19] employed the blinding
and permutation techniques to propose a privacy-preserving
forward algorithm. This algorithm is highly efficient and
without any accuracy loss because all computations were
performed over the real domain. However, this algorithm
cannot support the outsourced scenario. To outsource a part
of forward algorithm computation to the cloud, Ziegeldorf et
al. [21] employed garbled circuits, additive secret sharing, and
oblivious transfer to design a scheme. Although the scheme
can outsource a majority of two parties’ computation to the
cloud, the party (i.e., healthcare center in our scheme) with the
HMM model must be online to assist the cloud server to do
the forward algorithm computation. In this case, this scheme
cannot support the outsourced scenario in our work.

In [24], we proposed a variant of forward algorithm, in
which all computations are reduced to the matrix multipli-
cation. Then, we used the proposed algorithm to construct a

privacy-preserving forward algorithm, in which the compu-
tational cost of the forward algorithm is outsourced to two
non-collusive cloud servers. However, this scheme discloses
the plaintext HMM model and time-series data to the cloud
servers, so it is not applicable to the outsourced scenario.
Besides, some secure floating point primitives [30]–[33] can
be employed to achieve privacy-preserving forward algorithm
computation. However, same as existing homomorphic encryp-
tion scheme based algorithms, such algorithms can not be
applied to the outsourced scenario.

LSTM neural network is also an effective healthcare moni-
toring model for time-series activities data. However, existing
privacy-preserving LSTM neural network schemes [14], [15]
are not practical because they were constructed in the two-
server setting. Specifically, Ma et al. [14] leveraged the secret
sharing technique to design a privacy-preserving LSTM neural
network scheme. Wang et al. [15] employed the secret sharing
technique to construct security activation functions and further
proposed a privacy-preserving bidirectional LSTM neural net-
work based on the security activation functions.

Different from the above works, our privacy-preserving
healthcare monitoring scheme is designed in the outsourced
scenario with a single server. It can preserve the privacy of
the classification models and time-series activities data, and it
does not incur any accuracy loss.

VIII. CONCLUSION

In this paper, we have proposed an efficient and privacy-
preserving forward algorithm and further used it to construct
a privacy-preserving healthcare monitoring scheme. Specifi-
cally, we first proposed the concept of mutually orthogonal
matrices and introduced an approach to construct a set of
mutually orthogonal matrices. Then, we designed an effi-
cient and privacy-preserving forward algorithm, i.e., PPFA,
by leveraging a set of mutually orthogonal matrices and the
lightweight matrix encryption technique. Finally, we proposed
a privacy-preserving healthcare monitoring scheme based on
PPFA. In addition, we analyzed the security of our PPFA and
healthcare monitoring scheme, and conducted experiments to
validate their efficiency. In our future work, we plan to design a
more efficient healthcare monitoring scheme in the outsourced
scenario while guaranteeing the same security level.
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